uniffi_bindgen/interface/ffi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! # Low-level typesystem for the FFI layer of a component interface.
//!
//! This module provides the "FFI-level" typesystem of a UniFFI Rust Component, that is,
//! the C-style functions and structs and primitive datatypes that are used to interface
//! between the Rust component code and the foreign-language bindings.
//!
//! These types are purely an implementation detail of UniFFI, so consumers shouldn't
//! need to know about them. But as a developer working on UniFFI itself, you're likely
//! to spend a lot of time thinking about how these low-level types are used to represent
//! the higher-level "interface types" from the [`Type`] enum.
/// Represents the restricted set of low-level types that can be used to construct
/// the C-style FFI layer between a rust component and its foreign language bindings.
///
/// For the types that involve memory allocation, we make a distinction between
/// "owned" types (the recipient must free it, or pass it to someone else) and
/// "borrowed" types (the sender must keep it alive for the duration of the call).
use uniffi_meta::{ExternalKind, Type};
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum FfiType {
// N.B. there are no booleans at this layer, since they cause problems for JNA.
UInt8,
Int8,
UInt16,
Int16,
UInt32,
Int32,
UInt64,
Int64,
Float32,
Float64,
/// A `*const c_void` pointer to a rust-owned `Arc<T>`.
/// If you've got one of these, you must call the appropriate rust function to free it.
/// The templates will generate a unique `free` function for each T.
/// The inner string references the name of the `T` type.
RustArcPtr(String),
/// A byte buffer allocated by rust, and owned by whoever currently holds it.
/// If you've got one of these, you must either call the appropriate rust function to free it
/// or pass it to someone that will.
/// If the inner option is Some, it is the name of the external type. The bindings may need
/// to use this name to import the correct RustBuffer for that type.
RustBuffer(Option<String>),
/// A borrowed reference to some raw bytes owned by foreign language code.
/// The provider of this reference must keep it alive for the duration of the receiving call.
ForeignBytes,
/// Pointer to a callback function that handles all callbacks on the foreign language side.
ForeignCallback,
/// Pointer-sized opaque handle that represents a foreign executor. Foreign bindings can
/// either use an actual pointer or a usized integer.
ForeignExecutorHandle,
/// Pointer to the callback function that's invoked to schedule calls with a ForeignExecutor
ForeignExecutorCallback,
/// Pointer to a Rust future
RustFutureHandle,
/// Continuation function for a Rust future
RustFutureContinuationCallback,
RustFutureContinuationData,
// TODO: you can imagine a richer structural typesystem here, e.g. `Ref<String>` or something.
// We don't need that yet and it's possible we never will, so it isn't here for now.
}
/// When passing data across the FFI, each `Type` value will be lowered into a corresponding
/// `FfiType` value. This conversion tells you which one.
///
/// Note that the conversion is one-way - given an FfiType, it is not in general possible to
/// tell what the corresponding Type is that it's being used to represent.
impl From<&Type> for FfiType {
fn from(t: &Type) -> FfiType {
match t {
// Types that are the same map to themselves, naturally.
Type::UInt8 => FfiType::UInt8,
Type::Int8 => FfiType::Int8,
Type::UInt16 => FfiType::UInt16,
Type::Int16 => FfiType::Int16,
Type::UInt32 => FfiType::UInt32,
Type::Int32 => FfiType::Int32,
Type::UInt64 => FfiType::UInt64,
Type::Int64 => FfiType::Int64,
Type::Float32 => FfiType::Float32,
Type::Float64 => FfiType::Float64,
// Booleans lower into an Int8, to work around a bug in JNA.
Type::Boolean => FfiType::Int8,
// Strings are always owned rust values.
// We might add a separate type for borrowed strings in future.
Type::String => FfiType::RustBuffer(None),
// Byte strings are also always owned rust values.
// We might add a separate type for borrowed byte strings in future as well.
Type::Bytes => FfiType::RustBuffer(None),
// Objects are pointers to an Arc<>
Type::Object { name, .. } => FfiType::RustArcPtr(name.to_owned()),
// Callback interfaces are passed as opaque integer handles.
Type::CallbackInterface { .. } => FfiType::UInt64,
Type::ForeignExecutor => FfiType::ForeignExecutorHandle,
// Other types are serialized into a bytebuffer and deserialized on the other side.
Type::Enum { .. }
| Type::Record { .. }
| Type::Optional { .. }
| Type::Sequence { .. }
| Type::Map { .. }
| Type::Timestamp
| Type::Duration => FfiType::RustBuffer(None),
Type::External {
name,
kind: ExternalKind::Interface,
..
} => FfiType::RustArcPtr(name.clone()),
Type::External {
name,
kind: ExternalKind::DataClass,
..
} => FfiType::RustBuffer(Some(name.clone())),
Type::Custom { builtin, .. } => FfiType::from(builtin.as_ref()),
}
}
}
// Needed for rust scaffolding askama template
impl From<Type> for FfiType {
fn from(ty: Type) -> Self {
(&ty).into()
}
}
impl From<&&Type> for FfiType {
fn from(ty: &&Type) -> Self {
(*ty).into()
}
}
/// Represents an "extern C"-style function that will be part of the FFI.
///
/// These can't be declared explicitly in the UDL, but rather, are derived automatically
/// from the high-level interface. Each callable thing in the component API will have a
/// corresponding `FfiFunction` through which it can be invoked, and UniFFI also provides
/// some built-in `FfiFunction` helpers for use in the foreign language bindings.
#[derive(Debug, Clone)]
pub struct FfiFunction {
pub(super) name: String,
pub(super) is_async: bool,
pub(super) arguments: Vec<FfiArgument>,
pub(super) return_type: Option<FfiType>,
pub(super) has_rust_call_status_arg: bool,
/// Used by C# generator to differentiate the free function and call it with void*
/// instead of C# `SafeHandle` type. See <https://github.com/mozilla/uniffi-rs/pull/1488>.
pub(super) is_object_free_function: bool,
}
impl FfiFunction {
pub fn name(&self) -> &str {
&self.name
}
pub fn is_async(&self) -> bool {
self.is_async
}
pub fn arguments(&self) -> Vec<&FfiArgument> {
self.arguments.iter().collect()
}
pub fn return_type(&self) -> Option<&FfiType> {
self.return_type.as_ref()
}
pub fn has_rust_call_status_arg(&self) -> bool {
self.has_rust_call_status_arg
}
pub fn is_object_free_function(&self) -> bool {
self.is_object_free_function
}
pub fn init(
&mut self,
return_type: Option<FfiType>,
args: impl IntoIterator<Item = FfiArgument>,
) {
self.arguments = args.into_iter().collect();
if self.is_async() {
self.return_type = Some(FfiType::RustFutureHandle);
self.has_rust_call_status_arg = false;
} else {
self.return_type = return_type;
}
}
}
impl Default for FfiFunction {
fn default() -> Self {
Self {
name: "".into(),
is_async: false,
arguments: Vec::new(),
return_type: None,
has_rust_call_status_arg: true,
is_object_free_function: false,
}
}
}
/// Represents an argument to an FFI function.
///
/// Each argument has a name and a type.
#[derive(Debug, Clone)]
pub struct FfiArgument {
pub(super) name: String,
pub(super) type_: FfiType,
}
impl FfiArgument {
pub fn name(&self) -> &str {
&self.name
}
pub fn type_(&self) -> FfiType {
self.type_.clone()
}
}
#[cfg(test)]
mod test {
// There's not really much to test here to be honest,
// it's mostly type declarations.
}